A windowed Fourier pseudospectral method for hyperbolic conservation laws
نویسندگان
چکیده
A class of local spectral wavelet filters, discrete singular convolution (DSC) filters, is utilized to facilitate the Fourier pseudospectral method for the solution of hyperbolic conservation law systems. The DSC lowpass filters are adaptively implemented directly in the Fourier domain (i.e., windowed Fourier pseudospectral method), while a physical domain algorithm is also given to enable the treatment of some special boundary conditions. By adjusting the effective wavenumber region of the DSC filter, Gibbs oscillations can be removed effectively while the high resolution feature of the spectral method can be retained for a wide class of problems with various boundary conditions. The utility and effectiveness of the present approach are validated by extensive numerical experiments. The proposed method could operate at a resolution as high as only five points per wavelength (PPW) for the interaction of shocks and physical high frequency waves, which is some of the best for this class of problems. This high resolution, together with the low complexity of the fast Fourier transform (FFT), endows the proposed method considerable potential for solving large scale problems in hyperbolic conservation laws. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
A practical spectral method for hyperbolic conservation laws
A class of high-order lowpass filters, the discrete singular convolution (DSC) filters, is utilized to facilitate the Fourier pseudospectral method for the solution of hyperbolic conservation law systems. The DSC filters are implemented directly in the Fourier domain (i.e., windowed Fourier pseudospectral method), while a physical domain algorithm is also given to enable the treatment of some s...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملMulti-symplectic Fourier Pseudospectral Method for the Nonlinear Schrödinger Equation
Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space [4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear Schrödinger equation with periodic boundary conditions ha...
متن کاملMulti-symplectic Fourier Pseudospectral Method for a Higher Order Wave Equation of Kdv Type
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multisymplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of e...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 214 شماره
صفحات -
تاریخ انتشار 2006